Hyperactivation of PARP Triggers Nonhomologous End-Joining in Repair-Deficient Mouse Fibroblasts
نویسندگان
چکیده
Regulation of poly(ADP-ribose) (PAR) synthesis and turnover is critical to determining cell fate after genotoxic stress. Hyperactivation of PAR synthesis by poly(ADP-ribose) polymerase-1 (PARP-1) occurs when cells deficient in DNA repair are exposed to genotoxic agents; however, the function of this hyperactivation has not been adequately explained. Here, we examine PAR synthesis in mouse fibroblasts deficient in the base excision repair enzyme DNA polymerase β (pol β). The extent and duration of PARP-1 activation was measured after exposure to either the DNA alkylating agent, methyl methanesulfonate (MMS), or to low energy laser-induced DNA damage. There was strong DNA damage-induced hyperactivation of PARP-1 in pol β nullcells, but not in wild-type cells. In the case of MMS treatment, PAR synthesis did not lead to cell death in the pol β null cells, but instead resulted in increased PARylation of the nonhomologous end-joining (NHEJ) protein Ku70 and increased association of Ku70 with PARP-1. Inhibition of the NHEJ factor DNA-PK, under conditions of MMS-induced PARP-1 hyperactivation, enhanced necrotic cell death. These data suggest that PARP-1 hyperactivation is a protective mechanism triggering the classical-NHEJ DNA repair pathway when the primary alkylated base damage repair pathway is compromised.
منابع مشابه
Involvement of poly(ADP-ribose) polymerase-1 and XRCC1/DNA ligase III in an alternative route for DNA double-strand breaks rejoining.
The efficient repair of DNA double-strand breaks (DSBs) is critical for the maintenance of genomic integrity. In mammalian cells, the nonhomologous end-joining process that represents the predominant repair pathway relies on the DNA-dependent protein kinase (DNA-PK) and the XRCC4-DNA ligase IV complex. Nonetheless, several in vitro and in vivo results indicate that mammalian cells use more than...
متن کاملDeficient nonhomologous end-joining activity in cell-free extracts from Brca1-null fibroblasts.
BRCA1 ensures genomic stability, at least in part, through a functional role in DNA damage repair. BRCA1 interacts with the Rad50/Mre11/Nbs1 complex that occupies a central role in DNA double-strand break repair mediated by homologous recombination and nonhomologous end joining (NHEJ). NHEJ can be catalyzed by mammalian whole cell extract in a reaction dependent upon DNA ligase IV, Xrcc4, Ku70,...
متن کاملPARP-3 and APLF function together to accelerate nonhomologous end-joining.
PARP-3 is a member of the ADP-ribosyl transferase superfamily of unknown function. We show that PARP-3 is stimulated by DNA double-strand breaks (DSBs) in vitro and functions in the same pathway as the poly (ADP-ribose)-binding protein APLF to accelerate chromosomal DNA DSB repair. We implicate PARP-3 in the accumulation of APLF at DSBs and demonstrate that APLF promotes the retention of XRCC4/...
متن کاملThe nonhomologous end-joining pathway of DNA repair is required for genomic stability and the suppression of translocations.
We have used spectral karyotyping to assess potential roles of three different components of the nonhomologous DNA end-joining pathway in the maintenance of genomic stability in mouse embryonic fibroblasts (MEFs). MEFs homozygous for mutations that inactivate either DNA ligase IV (Lig4) or Ku70 display dramatic genomic instability, even in the absence of exogenous DNA damaging agents. These abe...
متن کاملLymphocyte-specific compensation for XLF/cernunnos end-joining functions in V(D)J recombination.
Mutations in XLF/Cernunnos (XLF) cause lymphocytopenia in humans, and various studies suggest an XLF role in classical nonhomologous end joining (C-NHEJ). We now find that XLF-deficient mouse embryonic fibroblasts are ionizing radiation (IR) sensitive and severely impaired for ability to support V(D)J recombination. Yet mature lymphocyte numbers in XLF-deficient mice are only modestly decreased...
متن کامل